#### 2020 Ryan White HIVIAIDS Program CLINICAL CONFERENCE

#### New Antiretroviral Drugs in Development and Novel ART Regimens

Constance A. Benson, MD Professor of Medicine and Global Public Health University of California San Diego La Jolla, California

#### **Financial Relationships With Commercial Entities**

Dr Benson has served on advisory and data safety monitoring boards for GlaxoSmithKline/ViiV Healthcare and received research grants awarded to her institution from Gilead Sciences, Inc. Her spouse has served as a consultant to CytoDyn, AbbVie and Sempra Energy; owns stock options in Antiva Biosciences and CytoDyn; has served on the board for Gilead Sciences, Inc., with payment remitted to his institution; and has served on data and safety monitoring boards for Gilead Sciences, Inc., and VIR. (Updated 07/25/20)

Slide 2 of 33

#### Learning Objectives

After attending this presentation, learners will be able to:

- Describe new or novel antiretroviral drugs in development for treatment of HIV
- Monitor new findings related to long-acting antiretroviral regimens in development

Slide 3 of 33

## Do We Need New Antiretroviral Drugs or Regimens?

Slide 4 of 33







# Novel Antiretroviral Drugs in Development

New ARV Classes with Novel Mechanisms of Action

lide 7 of 33

# Lenacapavir (GS-6207): A Novel First in Class Capsid Inhibitor Active against a broad range of HIV-1 isolates, including those resistant to

Here at 33







 Phase 1b randomized, double-blind, placebo-controlled dose ranging study in PLWH

 Overall, median age 33, 10% women, 54% white, 31% black, HIV-1 RNA 4.5 copies/ml, CD4 463 cells/mm3, 82% ART naïve, median duration of F/U 225d

| Key inclusion criteria:                      | n=6 - GS-6207 2  | 0 mg B/F/TAF           |     |
|----------------------------------------------|------------------|------------------------|-----|
| • HIV-1 RNA 5000-400,000 copies/mL           | n=6 - GS-6207 50 | I mg B/F/TAF           |     |
| • CD4+ cell count >200 cells/mm <sup>3</sup> | n=6 - GS-6207 11 | 50 mg B/F/TAF          |     |
| • Naive to CA and IN inhibitors              | n=6 - GS-6207 4  | 50 mg B/F/TAF          |     |
| • Experienced off ARV medications            | n=5 - GS-6207 7  | 50 mg B/F/TAF          |     |
| >12 months                                   | n=10* PBO        | B/F/TAF                |     |
|                                              | Day 1            | 10<br>Primary Endpoint | 225 |























#### Allosteric HIV-1 Integrase Inhibitor STP0404

- ALLINI: New class of ARVs that target LEDGF/p75 binding site of the viral integrase; interferes with IN-viral RNA interaction→vRNA mislocalization
- Significant activity against RAL-resistant strains
- Suppresses HIV-1 rebound from latently infected primary T cell reservoir
- No toxicity issues identified in cellular and animal testing
- Development as long-acting ARV (oral or IM/SQ)
- Phase 1 clinical trials Q2 2020

Ahn S, et al. CROI 2020; Abstr. 504 ide 16 of 33

| 0                                                                                             |                                                      | Average IC <sub>50</sub> (range, nM)                    |                                                                   |                                                                     |                                                                            |                                                                 |  |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------|--|
| Compound                                                                                      | 35                                                   | PBMC                                                    |                                                                   |                                                                     | MT-4                                                                       |                                                                 |  |
| STP0404                                                                                       |                                                      | 0.08 (0.02-0.22)                                        |                                                                   | 2                                                                   | 2.49 (0.95~3.48)                                                           |                                                                 |  |
| Zidovubin                                                                                     | Э                                                    | 7.96 (0.2220.7) 37.94 (29.7)                            |                                                                   | 7.94 (29.7~8                                                        | 57.6)                                                                      |                                                                 |  |
| Raltegravi                                                                                    | r i                                                  | 1,227.70 (12                                            | 2.5~3,036)                                                        | 2                                                                   | 2525 (351~4,322)                                                           |                                                                 |  |
| Elvitegravi                                                                                   | r                                                    |                                                         |                                                                   | 275                                                                 | 51.5 (276~1                                                                | 0,000)                                                          |  |
|                                                                                               | Dolutegravir                                         |                                                         |                                                                   |                                                                     | 4.57 (3.07~8.54)                                                           |                                                                 |  |
| Dolutegrav<br>Table 4. Pha                                                                    | ir<br>Irmacokir                                      | etic para                                               | A4L-resista<br>meters                                             | 4<br>st strains: 4736_2                                             | .57 (3.07~8<br>.4736_4.8070_1                                              | .54)<br>, 8070_2, 156                                           |  |
| Dolutegrav                                                                                    | ir<br>irmacokir<br>Cyno-f                            | -<br>letic para<br>lonkey                               | A4L-resista<br>meters<br>Beag                                     | 4<br>It stuirs: 4736_2                                              | 57 (3.07~8<br>4736_4.8070_1                                                | .54)<br>, 8070_2, 156<br>Rat                                    |  |
| Dolutegrav<br>Table 4. Pha<br>Parameters                                                      | ir<br>Irmacokir<br>Cyno-f<br>1 mpk                   | etic para<br>Ionkey<br>1 mpk                            | 84L-resista<br>meters<br>Beag<br>2 mpk                            | 4<br>It stuins: 4736_2<br>le Dog<br>2 mpk                           | 57 (3.07~8<br>4736_4.8070_1<br>SD<br>10 mpk                                | .54)<br>.8070_2, 159<br>Rat<br>5 mpk                            |  |
| Dolutegrav<br>Table 4. Pha<br>Parameters                                                      | ir<br>Cyno-I<br>1 mpk<br>(p.o)                       | etic para<br>Nonkey<br>1 mpk<br>(i.v)                   | B4L-resister<br>meters<br>Beag<br>2 mpk<br>(p.o)                  | 4<br>ht stuins: 4736_2<br>le Dog<br>2 mpk<br>(i.v)                  | .57 (3.078<br>4736_4.8070_1<br>SD<br>10 mpk<br>(p.o)                       | .54)<br>, 8070_2, 159<br>Rat<br>5 mpk<br>(i.v)                  |  |
| Dolutegrav<br>Table 4. Pha<br>Parameters<br>T <sub>1/2</sub> (hr)                             | ir<br>Cyno-f<br>1 mpk<br>(p.o)<br>5.25               | netic para<br>Monkey<br>1 mpk<br>(i.v)<br>8.02          | R4L-resister<br>meters<br>Beag<br>2 mpk<br>(p.o)<br>6.90          | 4<br>e Dog<br>2 mpk<br>(i.v)<br>6.11                                | .57 (3.07~8<br>4736_4.8070_t<br>SD<br>10 mpk<br>(p.o)<br>4.56              | .54)<br>.8070_2, 156<br>Rat<br>5 mpk<br>(i.v)<br>3.83           |  |
| Dolutegrav<br>Table 4. Pha<br>Parameters<br>T <sub>1/2</sub> (hr)<br>AUC (hr-nM)              | ir<br>Cyno-I<br>1 mpk<br>(p.o)<br>5.25<br>950        | -<br><b>Nonkey</b><br>1 mpk<br>(i.v)<br>8.02<br>3.601   | 84L-resista<br>meters<br>2 mpk<br>(p.o)<br>6.90<br>4,683          | 4<br>tf stuins: 4736_2<br>10 Dog<br>2 mpk<br>(i.v)<br>6.11<br>9,260 | 57 (3.078<br>4736_4.8070_1<br>50<br>10 mpk<br>(p.o)<br>4.56<br>78,047      | 54)<br>8070_2, 159<br>Rat<br>5 mpk<br>(i.v)<br>3.83<br>42,676   |  |
| Dolutegrav<br>Table 4. Pha<br>Parameters<br>T <sub>1/2</sub> (hr)<br>AUC (hr-nM)<br>Cmas (nM) | ir<br>Cyno-l<br>1 mpk<br>(p.o)<br>5.25<br>950<br>193 | netic para<br>Monkey<br>1 mpk<br>(i.v)<br>8.02<br>3,601 | 844-resista<br>meters<br>2 mpk<br>(p.o)<br>6.90<br>4,683<br>3,983 | 4<br>st stains: 4786_2<br>2 mpk<br>(i.v)<br>6.11<br>9,260<br>-      | 57 (3.07~8<br>4736_4.8070_1<br>10 mpk<br>(p.o)<br>4.56<br>78,047<br>21,380 | .54)<br>.8070_2, 159<br>Bat<br>5 mpk<br>(i.v)<br>3.83<br>42,676 |  |
| Dolutegrav<br>Table 4. Pha<br>Parameters<br>T <sub>1/2</sub> (hr)                             | ir<br>Cyno-f<br>1 mpk<br>(p.o)<br>5.25<br>950        | Monkey<br>1 mpk<br>(i.v)<br>8.02                        | Al. resista<br>meters<br>Beag<br>2 mpk<br>(p.o)<br>6.90<br>4.692  | 4<br>e Dog<br>2 mpk<br>(i.v)<br>6.11<br>9.260                       | .57 (3.07~8<br>4736 4.8070 f<br>SD<br>10 mpk<br>(p.o)<br>4.56<br>79.047    | .54)<br>.800_2, r<br>Bat<br>5 mp<br>(i.v)<br>3.83<br>42.60      |  |

#### **VPU Inhibitor BIT225**

- Vpu → HIV-1 encoded membrane protein with regulatory functions that enhance HIV replication fitness and promote innate immune evasion in multiple cell types
- BIT225 is a Vpu inhibitor  $\rightarrow$  inhibits HIV-1 replication in vitro
- Randomized clinical trial comparing BIT225 100mg, 200mg vs placebo added to ART in 36 ART-naïve PLHV starting therapy
   At the end of a 12-week treatment period markers of viral replication and immune function endpoints were evaluated

Avihingsanon A, et al. CROI 2020; Abstr. 508 lide 17 of 33

#### **VPU Inhibitor BIT225**

- Plasma HIV-1 RNA levels declined similarly in all cohorts
   Significant chapters in multiple immune
- Significant changes in multiple immune markers observed with BIT225 vs placebo
- Activated macrophages (sCD163 markers) were significantly reduced in the 200 mg BIT225 cohort vs ART alone
- Significant increase in activated CD8+, CD4+, and NK cells in BIT225 cohort vs placebo
  - Enhanced NK cell recruitment and activation suggested elimination of HIV-infected cells mediated via Vpu cell signaling

Avihingsanon A, et al. CROI 2020; Abstr. 508 lide 18 of 33



#### **Conclusions: Addition of BIT225 to ART**

- Unique stimulation of multiple components of the innate immune system
- T cell, NK cell, sCD163, and IL-21 data together suggest the addition of BIT225 to ART stimulates antigen presentation and T cell and NK cell priming.
- May induce changes to the immune system similar to that of long-term non-progressors
- BIT225 immune modulating effects may improve HIV-1 induced immune activation and its outcomes

Slide 19 of 33

#### Broadly Neutralizing Antibodies (bNAbs) for Treatment of HIV

- Naturally occurring bNAbs have a half-life of 2-3 wks and alone can lower VL by 1.5 log<sub>10</sub>
- In combination, bNAbs maintain viral suppression
- May be able to trigger immune function to clear latently infected cells
- Combinations of multispecific bNAbs may be a promising new ART approach

lide 20 of 33

 SAR441236 trispecific bNAb combines 3 HIV-1 env specificities in one antibody.
 Demonstrated potent broad HIV-1 neutralization in vitro and protection

Avihingsanon A, et al. CROI 2020; Abstr. 508



New Long-Acting Injectable ARV Regimens and Novel Long-Acting Injectable ARV Drugs in Development

Slide 21 of 33





#### ATLAS-2M Baseline Characteristics (ITT-E)

| Parameter                                                             | Q8W<br>n=522                    | Q4W<br>n=523                    | Total<br>N=1045*                 |
|-----------------------------------------------------------------------|---------------------------------|---------------------------------|----------------------------------|
| Prior exposure to CAB + RPV, n (%)<br>None<br>1–24 weeks<br>>24 weeks | 327 (63)<br>69 (13)<br>126 (24) | 327 (63)<br>68 (13)<br>128 (24) | 654 (63)<br>137 (13)<br>254 (24) |
| Median age (range), years                                             | 42 (20-83)                      | 42 (19-75)                      | 42 (19-83)                       |
| Age ≥50 years, n (%)                                                  | 143 (27)                        | 139 (27)                        | 282 (27)                         |
| Female (sex at birth), n (%)                                          | 137 (26)                        | 143 (27)                        | 280 (27)                         |
| Female (participant-reported gender), n (%)                           | 142 (27)                        | 146 (28)                        | 288 (28)                         |
| Race, n (%)                                                           |                                 |                                 |                                  |
| White                                                                 | 370 (71)                        | 393 (75)                        | 763 (73)                         |
| Black or African American                                             | 101 (19)                        | 90 (17)                         | 191 (18)                         |
| Other                                                                 | 51 (10)                         | 40 (8)                          | 91 (9)                           |
| Median body mass index (IQR), kg/m <sup>2</sup>                       | 26 (23-29)                      | 26 (23-29)                      | 26 (23-29)                       |
| ≥30, n (%)                                                            | 113 (22)                        | 98 (19)                         | 211 (20)                         |
| Median CD4 count (IQR)                                                | 642 (499-827)                   | 688 (523-878)                   | 661 (508-849)                    |
| 23 of 33                                                              |                                 | Overton TE, et al               | . CROI 2020; Abstr. 34           |

![](_page_7_Figure_5.jpeg)

![](_page_7_Figure_6.jpeg)

![](_page_8_Figure_0.jpeg)

#### ATLAS-2M Week 48 Conclusions

- Q8W dosing of CAB + RPV LA was highly effective and non-inferior to Q4W dosing
  - Virologic non-response infrequent and confirmed virologic failure low overall (1%); similar in both arms
     Virologic suppression maintained (94.3% Q8W and 93.5% Q4W)
- CAB + RPV LA was well-tolerated; comparable safety profile in both arms

- ISRs mostly Grade 1-2 (98%); median duration 3d

- Q8W dosing preferred over oral (98%) and over Q4W (94%)
- CAB + RPV LA, dosed Q8W, is an effective and well-tolerated

approach to maintenance of virologic suppression in PLWH

lide 26 of 33

![](_page_8_Figure_11.jpeg)

![](_page_8_Figure_12.jpeg)

![](_page_9_Figure_0.jpeg)

![](_page_9_Figure_2.jpeg)

Ford SL, et al. CROI 2020; Abstr. 466

Long-Acting Nanoformulation of Tenofovir

- TDF modified and formulated into long-acting lipid nanocrystals by high pressure homogenization

   NM1TFV, NM2TFV and M1, M2 prodrugs
- Sprague Dawley rats used for PK; TFV-DP levels measured in plasma, blood, multiple cell types, & PBMCs
- Formulation modifications extended half-life, improved potency → sustained prodrug and TFV-DP conc for 28d at half the TAF dose.

![](_page_9_Figure_7.jpeg)

![](_page_9_Figure_8.jpeg)

#### VM-1500-LAI: A Novel Long-Acting Injectable

- VM1500A is a novel, potent NNRTI with broad spectrum anti-HIV-1 activity
- · An oral prodrug of VM1500A, elsulfavirine, is approved in Russia
- · A long acting injectable (LAI) formulation has been developed to expand dosing options
- · A Phase 1, open-label, safety, tolerability, PK, ascending dose study in healthy volunteers enrolled:
- 27 men, mean age 26 y.o., BMI 23.9 kg/m2
- Single, multiple doses ranging from 150 to 1200 mg were administered IM once/month after a 2-week lead-in of daily dosing of elsulfavirine

ide 31 of 33

VM-1500-LAI: PK Results

- Single monthly injection with 600 mg of VM-1500A-LAI achieved a median  $C_{\rm trough}$  above target threshold for > 21 days
- Single monthly injection with 1200 mg achieved median plasma Ctrough for 35
- days Two consecutive monthly injections of
- 300 mg twice daily Achieved target levels for 4 weeks after the 1<sup>st</sup> injection and for 5 weeks after the 2nd injection with drug accumulation in plasma
- VM1500A LAI well tolerated with acceptable PK in healthy volunteers

de 32 of 33

![](_page_10_Figure_16.jpeg)

Murphy R, et al. CROI 2020; Abstr. 473LB

#### Summary

- The pipeline for development of novel investigational ARVs continues to evolve
  - There may be less need for new ARVs based on availability of multiple well-tolerated and convenient regimens and decreasing rates of drug resistance
  - With a few exceptions most new agents in development are targeting novel mechanisms of action and long-acting formulations
- The promise of novel long-acting injectable formulations for maintenance of virologic suppression is closer to reality
  - Fewer drugs, fewer pills but costs (monetary and resistance) remain to be established

lide 33 of 33

#### 2020 Ryan White HIV/AIDS Program CLINICAL CONFERENCE

### **Question-and-Answer Session**