Special Presentation: Advancing diagnosis of current HCV infection: new tools, new opportunities

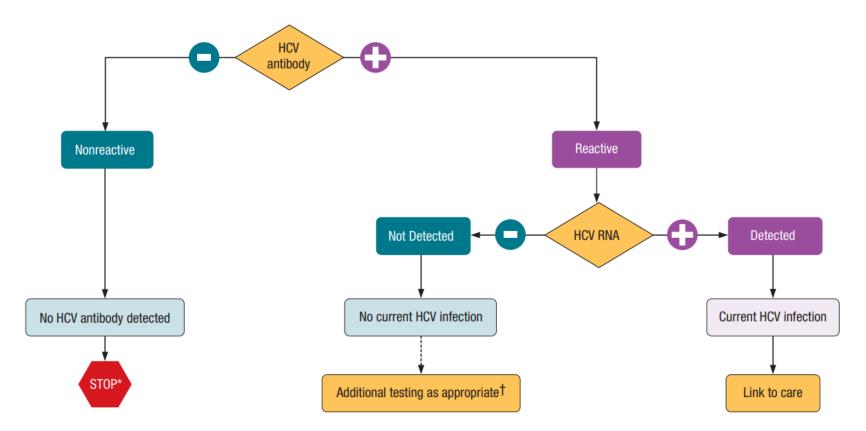
National Center for HIV, Viral Hepatitis, STD, and TB Prevention Division of Viral Hepatitis

Overview of Hepatitis C Guidelines, Tests, and Upcoming Innovations and Policy Changes

Nathan Furukawa, MD, MPH

Senior Advisor for Hepatitis C Elimination

Division of Viral Hepatitis


Centers for Disease Control and Prevention

CHAC Meeting April 2024 CDC's 2020 HCV Screening Guidelines recommend universal adult screening, during each pregnancy, and interval testing for people with ongoing risk.

Schillie S et al. CDC Recommendations for Hepatitis C Screening Among Adults - United States, 2020. MMWR Recomm Rep. 2020 Apr 10;69(2):1-17. doi: 10.15585/mmwr.rr6902a1.

CDC Recommended Testing Sequence for Identifying Current HCV Infection

CDC. Testing for HCV infection: An update of guidance for clinicians and laboratorians. MMWR 2013;62(18)

Currently Available FDA-Approved HCV Antibody Tests

Several Large Platform HCV Antibody Tests

Manufacturer	Platform	Assay
Abbott	ARCHITECT	ARCHITECT anti-HCV
Abbott	Alinity I	Alinity I Anti-HCV
Diasorin	LIAISON [®] XL	Murex HCV Ab
Quidel Ortho-Clinical Diagnostics	Vitros ECi	<i>Vitros</i> Immunodiagnostics Anti-HCV
Roche	Cobas e 601	Elecsys Anti-HCV II
Siemens	Advia Centaur	HCV (aHCV)

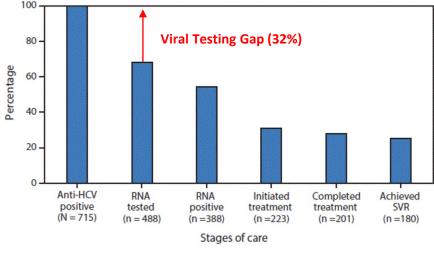
One Point-of-Care HCV Antibody Test

APHL. Optimizing Hepatitis C Virus Testing: Key Considerations for Reflexing HCV Antibody Reactive Specimens to Confirmatory HCV RNA Testing. February 2024. https://www.aphl.org/aboutAPHL/publications/Documents/ID-HCV-Reflex-Guide.pdf

Currently Available FDA-Approved HCV RNA Tests

Several Large Platform HCV RNA Tests

Manufacturer (PMA #)	Device ^a
Abbott Molecular (P00017)	Abbott RealTime HCV
Hologic	<u>Aptima HCV Qual</u>
(P020011)	<u>Dx Assay</u>
Hologic	Aptima HCV Quant
(P160023)	Dx Assay
Roche Molecular	<u>cobas-HCV (for</u>
(P150015)	<u>6800/8800)</u>
Roche Molecular (P060030) ^e	COBAS Ampliprep/ COBAS Taqman HCV Test


Currently no Point-of-Care HCV RNA Tests

APHL. Interpretation of Hepatitis C Virus Test Results: Guidance for Laboratories. January 2019. https://www.aphl.org/aboutAPHL/publications/Documents/ID-2019Jan-HCV-Test-Result-Interpretation-Guide.pdf

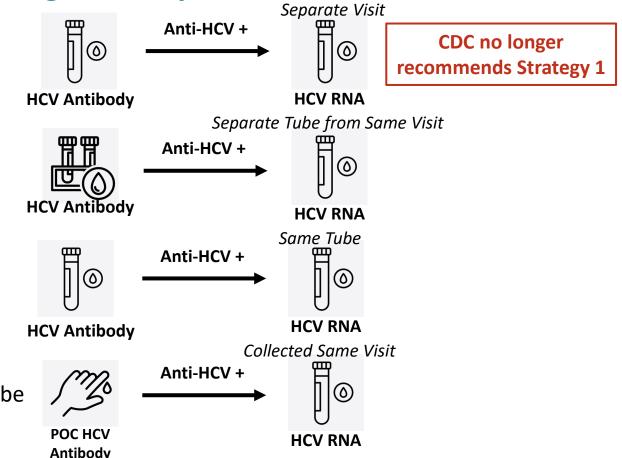
Challenges with the Current Diagnostic Algorithm

- Incomplete testing
- Loss to follow up
- Longer time to diagnosis
- Misses early HCV infection
- No POC viremia test
- Same visit test and treat not possible

Hepatitis C Care Cascade — Cherokee Nation Health Services October 2012–July 2015

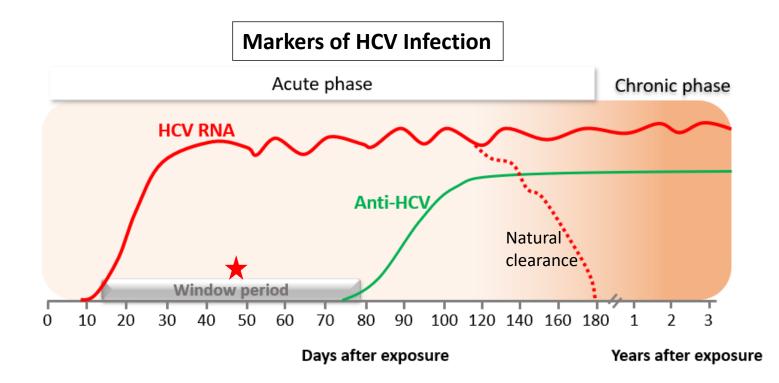
(Before Implementation of Reflex Testing)

Mera J et al. Identification and Clinical Management of Persons with Chronic Hepatitis C Virus Infection - Cherokee Nation, 2012-2015. MMWR Morb Mortal Wkly Rep. 2016 May 13;65(18):461-6.


Current HCV RNA Testing Pathways

1) Two Encounters: 1 Tube Each

2) Single Encounter: 2 Tubes


3) Single Encounter: 1 Tube

4) Single Encounter: FS and 1 Tube

Cartwright EJ et al. Updated Operational Guidance for Implementing CDC's Recommendations on Testing for Hepatitis C Virus Infection. MMWR Morb Mortal Wkly Rep. 2023 Jul 14;72(28):766-768.

The traditional HCV antibody to RNA approach misses early infection, limiting opportunities to interrupt transmission.

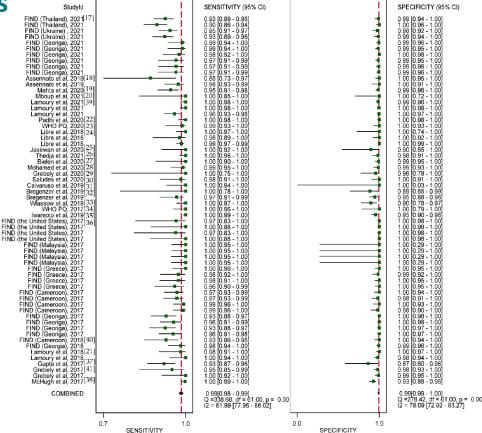
New Diagnostic Approaches that Promote Viral First Testing

POC HCV RNA Tests

Large Platform HCV Ag/Ab Tests

New Diagnostic Approaches that Promote Viral First Testing

POC HCV RNA Tests


Large Platform HCV Ag/Ab Tests

Globally Available POC HCV RNA Tests

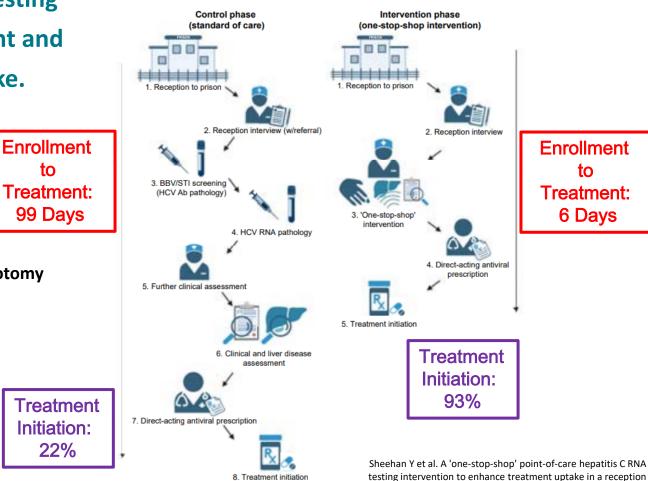
POC HCV RNA tests available outside the U.S. have high sensitivity (95% CI: 98–99%) and specificity (95% CI: 99–100%).

Manufacturer	Assay
Cepheid	Xpert HCV Viral Load Xpert HCV VL Fingerstick
Genedrive	HCV ID Kit
Molbio Dignostics	Truenat HCV RNA
Diagnostics for the New World	SAMBA II HCV Qualitative Whole Blood Test

Tang W et al. Diagnostic Accuracy of Point-of-Care HCV Viral Load Assays for HCV Diagnosis: A Systematic Review and Meta-Analysis. Diagnostics (Basel). 2022 May 18;12(5):1255.

POC HCV RNA testing is associated with a higher rate of treatment uptake across several studies.

Meta-analysis of within-study comparisons of HCV RNA POC versus SOC for the relative risk of treatment uptake


	POC assay vs SOC assay comparison	Relative risk (95% Cl)
Bajis et al (2020) ²⁷	Onsite POC (same site, different visit) vs SOC (same site, different visit)	<u> </u>
Schürch et al (2020) ³²	Onsite POC (same site, different visit) vs SOC (same site, different visit)	1.29 (0.78–2.13)
Martel-Laferrière et al (2019), ³³ Martel-Laferrière et al (2022) ³⁴	Onsite POC (different site, different visit) vs SOC (different site, different visit)	1.86 (1.32-2.63)
Japaridze et al (2020),43 Shilton et al (2022)44	Onsite POC (different site, different visit) vs SOC (different site, different visit)	1.00 (0.95–1.05)
London Joint Working Group on Substance Use and Hepatitis C (2018), ⁴⁷	Onsite POC (same site, different visit) vs SOC (same site, different visit)	0.31 (0.20-0.47)
London Joint Working Group on Substance Use and Hepatitis C (2019) ⁴⁸		
Walker et al (2020) ⁵⁵	Onsite POC (same site, different visit) vs SOC (same site, different visit)	0.81 (0.79-0.83)
Khalid et al (2020) ⁵⁶	Onsite POC (same site, different visit) vs SOC (same site, different visit)	0.64 (0.43-0.96)
Mohamed et al (2020) ⁶³	Onsite POC (same site, different visit) vs SOC (same site, different visit)	4.05 (2.42-6.80)
Davies et al (2020) ⁶⁴	Onsite POC (same site, different visit) vs SOC (same site, different visit)	2.67 (1.22-5.84)
Ustianowski et al (2020) ⁶⁷	Onsite POC (same site, different visit) vs SOC (same site, different visit)	3.38 (2.20-5.20)
Overall <i>I</i> ² =95·8%, p<0·0001		1.32 (1.06–1.64)
	0.0303 1	33
	1.32 [1.06–1.64]	

Trickey A et al. Impact of hepatitis C virus point-of-care RNA viral load testing compared with laboratory-based testing on uptake of RNA testing and treatment, and turnaround times: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2023 Mar;8(3):253-270.

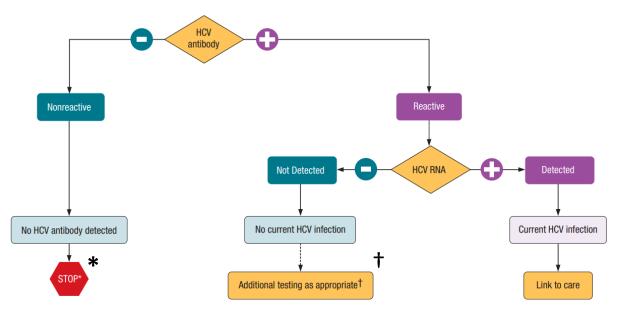
Example: POC HCV RNA testing shortens time to treatment and

increases treatment uptake.

, time from enrolment to treatment initiation, and treatment uptake in control phase (s and intervention phase ('one-stop-shop' intervention)

prison: The PIVOT study. J Hepatol. 2023 Sep;79(3):635-644.

PIVOT Study


- Setting: Australian prisons
- Comparators: Sequential phlebotomy vs single visit POC testing
- Outcomes:
 - Time from enrollment to treatment initiation
 - Treatment uptake

Analytic and clinical trial studies of a CLIA-waived POC HCV RNA test are underway.

CDC is working with the Independent Test Assessment Program (ITAP)

- Mid-2023: ITAP identified 1 manufacturer to move through the ITAP process
- Late 2023: Started independent laboratory testing, analytic studies, and clinical trial prep
- Early 2024: Launched clinical trials
- Summer 2024: Anticipated completion of analytic and clinical trial studies for FDA review

CDC 2013 guidance for laboratorians and clinicians already recommends HCV RNA testing for people with recent HCV exposure.

*For persons who might have been exposed to HCV within the past 6 months, testing for HCV RNA or followup testing for HCV antibody is recommended.

+ ...Repeat HCV RNA testing if the person tested is suspected to have had
HCV exposure within the past 6
months or has clinical evidence of HCV disease.

Summary

HCV RNA testing is currently recommended for the diagnosis of HCV infection among persons who might have been exposed to HCV within the past 6 months (regardless of anti-HCV result).

Envisioning a Same Day Test and Treat Approach for Hepatitis C

POC HCV RNA testing opens the possibility of same-day test and treat.

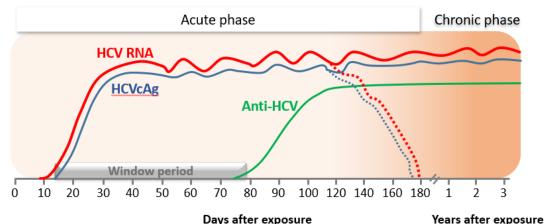
Remaining Barriers

- Lack of POC HBsAg diagnostics to rule out HCV/HBV co-infection
 - Several POC HBsAg tests exist outside of the U.S.
 - FDA has signaled HBV downclassification to Class II eminent
- Simplified guidelines still require lots of labs and visits
 - The AASLD/IDSA Guidelines Group is working on same-day hepatitis C treatment guidance

One-Stop Shop

New Diagnostic Approaches that Promote Viral First Testing

POC HCV RNA Tests



Large Platform HCV Ag/Ab Tests

Hepatitis C core antigen (HCV Ag) is a large platform test for viremia.

- Detectable within 1–2 weeks after HCV infection
- Less sensitive than HCV RNA (LLoD 500–3,000 IU/mL)
- Can run on the same sample/aliquot used for HCV antibody testing
- Priced lower than HCV RNA globally

HCV Ag testing alone is not sufficient for testing in the general population.

- The lower sensitivity of HCV Ag creates challenges of its use in low prevalence settings (i.e., the general population)
 - E.g., Risk of a false negative in someone receiving their one-time universal screening
- HCV Ag can be combined with HCV antibody to improve performance

Sn= 0.96 (95% CI= 0.94-0.97)

Study II		Se (95% CI)	Study ID	1	Sp (95% Cl)
Sun et al. (2022		0.94 [0.84 - 0.98]	Sun et al. (2022)	+	1.00 [0.99 - 1.00]
Torrecillas et al. (2022		0.98 [0.92 - 1.00]	Torrecillas et al. (2022)		1.00 [0.97 - 1.00]
Chuaypen et al. (2022		0.95 [0.86 - 0.99]	Chuaypen et al. (2022)		1.00 [0.90 - 1.00]
Ponnuvel et al. (2021		0.81 [0.73 - 0.87]	Ponnuvel et al. (2021)	-	0.99 [0.95 - 1.00]
Kumbhar et al. (2021		0.92 [0.84 - 0.96]	Kumbhar et al. (2021)	-	0.99 [0.95 - 1.00]
Kumar et al. (2021		0.98 [0.91 - 1.00]	Kumar et al. (2021)		1.00 [0.87 - 1.00]
Kannan et al. (2021		0.76 [0.63 - 0.87]	Kannan et al. (2021)		1.00 [0.96 - 1.00]
Kallala et al. (2021		0.95 [0.89 - 0.98]	Kallala et al. (2021)		1.00 [0.63 - 1.00]
Chen et al. (2021)	L	0.98 [0.96 - 1.00]	Chen et al. (2021)		0.99 [0.96 - 1.00]
Abid et al. (2021)		0.95 [0.90 - 0.98]	Abid et al. (2021)		0.94 [0.85 - 0.98]
Wong et al. (2020		0.91 [0.82 - 0.96]	Wong et al. (2020)		1.00 [0.87 - 1.00]
Pollock et al. (2020		0.82 [0.77 - 0.86]	Pollock et al. (2020)	1	
Suttichaimongkol et al. (2020					1.00 [0.99 - 1.00]
		0.95 [0.90 - 0.98]	Suttichaimongkol et al. (2019)		0.88 [0.64 - 0.99]
Pérez-Garcia et al. (2019		0.97 [0.86 - 1.00]	Pérez-Garcia et al. (2019)		1.00 [0.16 - 1.00]
Kyuregyan et al. (2019		1.00 [0.79 - 1.00]	Kyuregyan et al. (2019)		1.00 [0.78 - 1.00]
Catlett et al. (2019		0.98 [0.90 - 1.00]	Catlett et al. (2019)		1.00 [0.97 - 1.00]
Lamoury et al. (2018		0.91 [0.84 - 0.96]	Lamoury et al. (2018)		1.00 [0.87 - 1.00]
Chang et al. (2018		0.99 [0.96 - 1.00]	Chang et al. (2018)		1.00 [0.85 - 1.00]
Benito et al. (2018		1.00 [0.93 - 1.00]	Benito et al. (2018)	<u> </u>	0.77 [0.55 - 0.92]
Alonso et al. (2018		0.84 [0.78 - 0.89]	Alonso et al. (2018)		0.90 [0.73 - 0.98]
Adiand et al. (2018		0.95 [0.89 - 0.98]	Adland et al. (2018)		1.00 [0.95 - 1.00]
Wasitthankasem et al. (2017		0.99 [0.97 - 1.00]	Wasitthankasem et al. (2017)		1.00 [0.95 - 1.00]
Talal et al. (2017		0.98 [0.89 - 1.00]	Talal et al. (2017)	-	1.00 [0.94 - 1.00]
Rockstroh et al. (2017	-	1.00 [0.98 - 1.00]	Rockstroh et al. (2017)		1.00 [0.99 - 1.00]
Mohamed et al. (2017	•	0.99 [0.95 - 1.00]	Mohamed et al. (2017)		0.95 [0.82 - 0.99]
Hullegie et al. (2017		0.89 [0.75 - 0.96]	Hullegie et al. (2017)		1.00 [0.85 - 1.00]
Duchesne et al. (2017	+	0.96 [0.94 - 0.97]	Duchesne et al. (2017)	1	0.98 [0.96 - 0.99]
Çetiner et al. (2017		0.94 [0.88 - 0.97]	Çetiner et al. (2017)		1.00 [0.83 - 1.00]
Medici et al. (2016		0.98 [0.92 - 1.00]	Medici et al. (2016)	-4	0.99 [0.94 - 1.00]
Demircili et al. (2016		0.96 [0.89 - 0.99]	Demircili et al. (2016)	+	1.00 [0.97 - 1.00]
Kamal et al. (2015		1.00 [0.99 - 1.00]	Kamal et al. (2015)		1.00 [0.93 - 1.00]
Van Helden et al. (2014		0.99 [0.98 - 1.00]	Van Helden et al. (2014)	•	0.99 [0.99 - 1.00]
Reyes-Mendez et al. (2014		0.92 [0.78 - 0.98]	Reves-Mendez et al. (2014)	+	0.99 [0.97 - 1.00]
Kadkhoda et al. (2014		0.87 [0.78 - 0.93]	Kadkhoda et al. (2014)		0.97 [0.89 - 1.00]
Heidrich et al. (2014		0.93 [0.90 - 0.94]	Heidrich et al. (2014)	-	0.99 [0.97 - 1.00]
Garbuglia et al. (2014		0.92 [0.88 - 0.95]	Garbuglia et al. (2014)		1.00 [0.80 - 1.00]
Florea et al. (2014		0.74 [0.61 - 0.85]	Florea et al. (2014)		1.00 [0.81 - 1.00]
Chevaliez (2014		0.98 [0.96 - 0.99]	Chevaliez (2014)		1.00 [0.98 - 1.00]
Buket et al. (2014		0.86 [0.78 - 0.93]	Buket et al. (2014)		1.00 [0.82 - 1.00]
Hadziyannis et al. (2013		0.98 [0.92 - 1.00]	Hadziyannis et al. (2013)		1.00 [0.79 - 1.00]
lados-Arboledas et al. (2013			Alados-Arboledas et al. (2013)		
		0.95 [0.89 - 0.99]			0.95 [0.83 - 0.99]
Kuo et al. (2012)		0.98 [0.92 - 1.00]	Kuo et al. (2012)		0.97 [0.95 - 0.99]
Kesli et al. (2011		0.96 [0.92 - 0.99]	Kesli et al. (2011)		1.00 [0.93 - 1.00]
Ergunay et al. (2011		0.72 [0.66 - 0.78]	Ergunay et al. (2011)		0.94 [0.84 - 0.99]
Park et al. (2010		0.90 [0.85 - 0.94]	Park et al. (2010)	1	1.00 [0.97 - 1.00]
Miedouge et al. (2010	· · · · · · · · · · · · · · · · · · ·	0.92 [0.85 - 0.96]	Miedouge et al. (2010)	T	0.99 [0.99 - 1.00]
Overall		0.96 [0.94 - 0.97]	Overall		0.99 [0.99 - 1.00]
		Q =771.88, df = 45.00, p < 0.001			Q = 269.60, df = 45.00, p < 0.0
		I ² = 94.17 [93.08 - 95.26]	and the second se		² = 83.31 [79.06 - 87.56]

Platform: Abbott ARCHITECT HCV Ag assay

Sp= 0.99 (95% CI = 0.99-1.00)

Sepúlveda-Crespo D., Diagnostic performance of hepatitis C core antigen assay to identify active infections: A systematic review and meta-analysis. Rev Med Virol. 2023 May;33(3):e2436.

Globally Available HCV Ag/Ab Tests

Large Platform HCV Ag/Ab

Manufacturer	Assay
Roche	Elecsys [®] HCV Duo
Abbott	Murex Ag/Ab
Bio-Rad	Monolisa™ HCV Ag/Ab Ultra

Currently no Point-of-Care HCV Ag/Ab Tests

Unlocking the Potential of HCV Ag/Ab Testing

HCV Ag/Ab testing can reduce incomplete testing, shorten the time to diagnosis, and capture early HCV infection.

It may be possible to develop a POC HCV Ag/Ab test

Remaining Barriers

- Lack of an FDA-approved HCV Ag/Ab test
 - CDC is working with FDA to evaluate large platform HCV Ag/Ab tests
- Lack of guidelines to HCV Ag/Ab use in the United States
 - CDC is conducting cost-effective analyses and revising its HCV testing guidance for clinicians and laboratorians

The additional diagnostics needed to eliminate hepatitis C are coming soon

Nathan Furukawa, MD, MPH

Senior Advisor for Hepatitis C Elimination

Division of Viral Hepatitis

Centers for Disease Control and Prevention

nmt6@cdc.gov

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Cost-effectiveness Analysis of Hepatitis C Testing Strategies for Diagnosis of US Adults

Eric Hall, PhD, MPH

Oregon Health & Science University OHSU-PSU School of Public Health

SCHOOL OF PUBLIC HEALTH

CAMPModeling.org

CHAC Meeting 2024

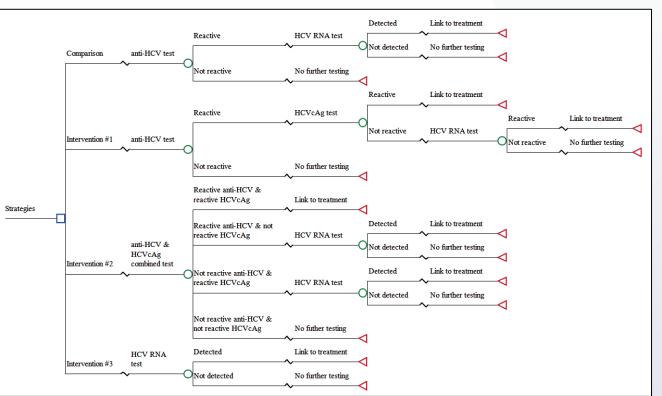
The traditional HCV-Ab to RNA approach misses early infection, limiting opportunities to interrupt transmission.

Rep. 2013 May 10;62(18):362-5. PMID: 23657112;

PMCID: PMC4605020.

Objective and Strategies Considered

• **Objective:** Assess the cost-effectiveness or various HCV testing strategies compared to current two-step testing algorithm.


Strategies:

- <u>Comparison</u>
 - 1. Anti-HCV followed, when reactive, by
 - 2. HCV RNA
- Intervention 1
 - 1. Anti-HCV followed, when reactive, by
 - 2. HCVcAg followed, when non-reactive, by
 - 3. HCV RNA
- Intervention 2
 - 1. Anti-HCV and HCVcAg concurrent testing test followed, when Ab/Ag results discordant, by
 - 2. HCV RNA
- Intervention 3
 - HCV RNA

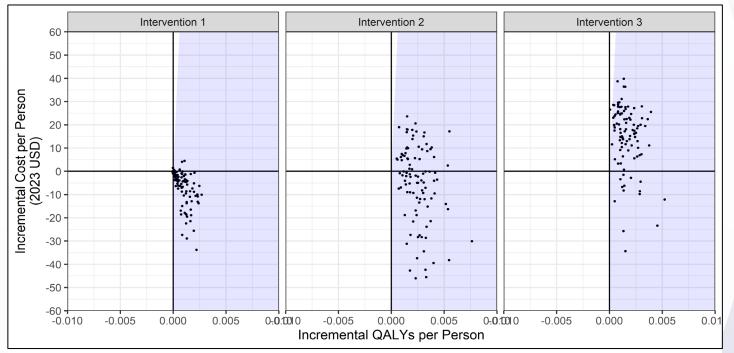
Model Details

- Model: Decision-tree with a Markov model of HCV progression
- Cohort: US adults
- Outcomes (lifetime of cohort):
 - Cost (2023 USD)
 - QALYs
 - HCV-related health outcomes

HCV Test and	Base			
Treatment Inputs	Case	Range	Reference	Input Notes
Anti-HCV				 All trials are tested at a single point
Sensitivity (%, ≥ 2				in time.
months)	98.1	(92.6-99.7)	1	 HCV RNA and HCV cAg was
Specificity (%, \geq 2 months)	99.8	(99.2-99.9)	1	detectable within the first month.
Cost (2023 USD)	14.27	(10.70-17.88)	2	
HCV cAg				 Anti-HCV was first detectable at the end of the second month.
Sensitivity (%)	96.0	(94.0-97.0)	3	
Specificity (%)	99.4	(99.0-100.0)	3	Anti-HCV & HCV RNA costs are
Cost (2023 USD)	14.27	(5.00-25.00)	Assumption	from CMS (Clinical Diagnostic
HCV RNA				Laboratory Fee)
Sensitivity (%)	100.0	(94.0-100.0)	3,4,5	 Assumed cost of HCV cAg test is
Specificity (%)	100.0	(98.3-100.0)	3,4,5	the same as an anti-HCV test (base
Cost (2023) USD	42.84	(31.14-53.55)	2	case).
P of linkage to treatment	80.0	(60.0-100.0)	6	 80% linkage to treatment
P of treatment to SVR	97.0	(95.0-100.0)	7	 WHO treatment targets
Cost of treatment	25,200	(7,500-75,000)	8	

Y

Analysis


- Compared each intervention to the comparison strategy
 - Fewer QALYs: comparison strategy preferred
 - More QALYs, lower cost: intervention strategy preferred
 - More QALYs, higher cost: incremental-cost effectiveness ratio (ICER)
- Base Case Analysis
 - Point estimate (i.e. "best value") for all inputs
- Sensitivity Analyses
 - Probabilistic sensitivity analysis: sample from ranges for all inputs concurrently
 - One-way sensitivity analysis on cost of HCV cAg test
 - \$10.00 to \$50.00, in increments of \$5.00

Results: Base Case Analysis of HCV Testing Strategies, Relative to Comparison Strategy

	Intervention 1: Anti-HCV (+) → HCVcAg (–)	Intervention 2: Anti-HCV & HCVcAg (+/-)	Intervention 3:
Outcome	→ HCV RNA	→ HCV RNA	HCV RNA
Economic outcomes			
(per person)			
Cost (2023 USD)	-0.26	8.60	21.48
Life-years	0.0000	0.0010	0.0010
QALYs	0.0000	0.0017	0.0017
ICER (USD per			
QALY)	n/a	8,467	20,513
Health outcomes			
Diagnosed			
infections	0.00%	2.05%	2.14%
Treated infections	0.00%	2.05%	2.14%
HCV-related deaths	0.00%	-3.86%	-4.09%

Results: Probabilistic Sensitivity Analysis

Note: The comparison strategy for all intervention strategies is an anti-HCV test with automatic HCV RNA test when anti-HCV is reactive. The following intervention strategies were considered: anti-HCV, with automatic HCV cAg for all when anti-HCV is reactive, followed by an HCV RNA test for subsequent HCV cAg results that are not reactive (Intervention 1); anti-HCV and HCV cAg combination test, with automatic HCV RNA test for discordant results (Intervention 2); HCV RNA test alone (Intervention 3). All trials were tested once at a single point in time. The shaded area represents regions in which results that would indicate the intervention strategy is preferred over the comparison strategy, at a willingness-to-pay threshold of \$100,000 per QALY gained.

Results: One-way Sensitivity Analysis

	Intervention 1: Anti-HCV (+) → HCVcAg (–)	Intervention 2: Anti-HCV & HCVcAg (+/-)	Intervention 3:
Cost of HCVcAg test	→ HCV RNA	→ HCV RNA	HCV RNA alone
10.00 USD	Lower cost, same QALYs	ICER=\$5,723	ICER=\$20,513
15.00 USD	Lower cost, same QALYs	ICER=\$10,839	ICER=\$20,513
20.00 USD	Lower cost, same QALYs	ICER=\$15,956	ICER=\$20,513
25.00 USD	Lower cost, same QALYs	ICER=\$21,073	ICER=\$20,513
30. 00 USD	Higher cost (\$0.12/person), same QALYs	ICER=\$26,189	ICER=\$20,513
35.00 USD	Higher cost (\$0.27/person), same QALYs	ICER=\$31,306	ICER=\$20,513
40.00 USD	Higher cost (\$0.42/person), same QALYs	ICER=\$36,423	ICER=\$20,513
45.00 USD	Higher cost (\$0.57/person), same QALYs	ICER=\$41,540	ICER=\$20,513
50.00 USD	Higher cost (\$0.72/person), same QALYs	ICER=\$46,656	ICER=\$20,513

Abbreviations: USD, US dollars; ICER, incremental cost-effectiveness ratio; QALY, quality-adjusted life-years.

Note: The comparison strategy for all intervention strategies is an anti-HCV test with automatic HCV RNA test when anti-HCV is reactive. All trials were tested once at a single point in time. For each analysis, Intervention 1 results in the same number of QALYs

Considerations

- Intervention 1 can be a cost-saving approach.
- The strategies that incorporated viral detection in the first step (*Interventions 2 & 3*) resulted in increased detection of infection and improved health outcomes.
- Limitations
 - Static risk of infection did not model impact of early diagnosis on reduction of ongoing transmission
 - Likely underestimate of the benefits of interventions 2 & 3
 - Modeled an average of the entire US adult population
 - Potential for additional benefits among persons with higher HCV prevalence or risk of infection
 - Assumed test performance (sensitivity and specificity) is the same for all persons
 - Modeled test cost and performance, but did not incorporate potential impact on linkage to care.
 - Point-of-care testing can play a unique role in advancing same-day testing and treatment.

Partners and Acknowledgements

CAMP Support:

- Monica Trigg, Emory University
- Abby Tighe, Emory University

CDC Collaborators:

- Carolyn Wester, DVH
- Amy Sandul, DVH
- Emily J. Cartwright, DVH
- Kevin Heslin, DVH
- Saleem Kamili, DVH
- Hasan Smymu, DVH
- Taiwo Abimbola, NCHHSTP

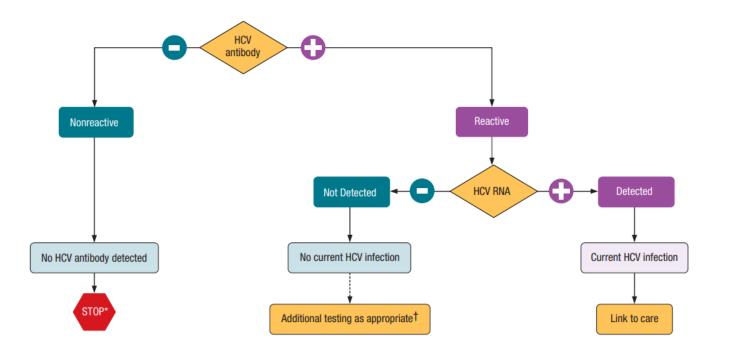
Questions or Comments:

Eric Hall <u>halleri@ohsu.edu</u>

National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention Division of Viral Hepatitis

Updating HCV Testing Guidance for Laboratorians and Clinicians

Emily J. Cartwright, MD Medical Officer Clinical Interventions Team


CDC/HRSA Advisory Committee meeting April 10, 2024

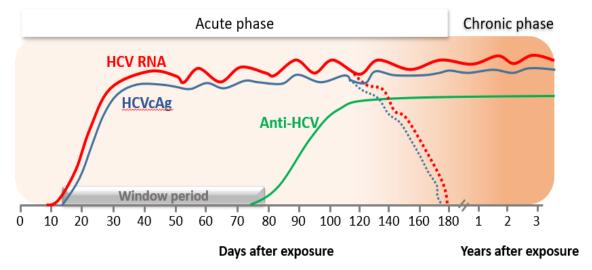
Testing for HCV Infection: An Update of Guidance for Clinicians and Laboratorians MMWR / May 10, 2013 / Vol. 62 / No. 18

Recommended Testing Sequence for Identifying Current Hepatitis C Virus (HCV) Infection

U.S. Department of Health and Human Services Centers for Disease Control and Prevention

Updated Operational Guidance for Implementing CDC's Recommendations on Testing for Hepatitis C Virus Infection

Weekly / July 14, 2023 / 72(28);766-768


Hepatitis C testing should be completed in a single visit

- Automatic HCV RNA testing should be performed on all HCV antibody reactive samples
- Testing strategies that require multiple visits to collect HCV testing samples should be discontinued

HCV Testing – Window Period

- Following infection:
 - HCV RNA: 1-2 weeks¹
 - HCV cAg: 2-3 weeks²
 - Anti-HCV: 7-8 weeks¹
 - (HCV cAg = HCV Core Antigen) (Anti-HCV = HCV antibody)

Virologic tests shorten the window period to HCV diagnosis

Objective

- Update the 2013 Hepatitis C Testing Guidelines
- Use assays that detect viral markers (HCV RNA or HCV cAg) in the first step of the testing sequence ("viral-first")
 - Shorten the window period
 - Increase early diagnosis of HCV infection

PICO Questions

- Population: General adult population
- Intervention(s): Viral-first hepatitis C testing strategies
 - #1: Concurrent anti-HCV/ HCV cAg followed, when discordant, by HCV RNA
 - #2: HCV RNA
- **Comparison:** Current HCV antibody-first strategy
 - Anti-HCV followed, when reactive, by HCV RNA

Outcomes:

- Diagnosed current HCV infections
- Treated HCV infections
- Hepatitis C morbidity and mortality

Research Questions

Compared to the comparison strategy,

- Does Intervention 1
 - 1. Increase the diagnosis of current HCV infection
 - 2. Increase HCV treatment
 - 3. Decrease morbidity and mortality attributable to HCV infection?

Does Intervention 2

- 1. Increase the diagnosis of current HCV infection
- 2. Increase HCV treatment
- 3. Decrease morbidity and mortality attributable to HCV infection?

How many additional cases diagnosed?	How many additional cases treated?	Do benefits outweigh harms?	What is the effect on morbidity and mortality attributable to HCV infection?*
K.Q.1.a What is the prevalence of past or present HCV in the U.S.?	K.Q.2.a. What proportion of persons who are diagnosed with current HCV infection are treated in the U.S.?	K.Q.3.a. What are the benefits of hepatitis C screening?	K.Q.4.a. What is the effect of DAA treatment on HCV viral load?
K.Q.1.b What is the prevalence of current HCV infection in the U.S.?		K.Q.3.b. What are the harms of hepatitis C screening?	K.Q.4.b. What is the effect of DAA treatment on hepatitis C-related morbidity (including cirrhosis and hepatocellular carcinoma)?
K.Q.1.c. What is the incidence of HCV infection in the U.S.?			K.Q.4.c. What is the effect of DAA treatment on hepatitis C-related mortality?
K.Q.1.d. What is the diagnostic accuracy of anti- HCV, HCVcAg, HCV RNA?			K.Q.4.d. What are the adverse effects of DAA treatment?

* As key questions 4.a – 4.d. have been reviewed recently, they will not be included in this review

Additional Considerations

Intended audience

- U.S. healthcare clinicians, public health officials, and organizations involved in the development, implementation, delivery, and evaluation of clinical diagnostics and laboratory testing services
- Systematic review of the domestic and global literature from 2013 through 2023
- Interventions evaluated are not currently FDA approved for intended use
 - HCV cAg test is not currently available in U.S. or FDA-approved
 - HCV RNA is currently only FDA-approved for diagnosis in context of a reactive anti-HCV

Partner Engagement Strategy

April 2024

CDC/HRSA Advisory Committee (CHAC) presentation

Fall 2024

- Association of Public Health Laboratories (APHL) led convening of key stakeholders
 - Similar to APHL-led convening on HCV diagnostics held in 2021
- ID Week (IDSA) presentation, October 2024
- The Liver Meeting (AASLD) presentation, November 2024

Timeline

Step	Duration	Target date
Complete systematic literature review	4 months	June 2024
Complete draft guidelines	3 months	September 2024
CDC Clearance of draft guideline	2-3 months	Oct-Dec 2024
Federal RegisterNotice of 60-day public comment period	2 months	Jan-Feb 2025
Peer review from external experts	1 month	Jan-Feb 2025
Disposition of Peer review and Public comments	1 month	March 2025
CDC clearance of finalized guideline	1 month	April 2025
MMWR Production and Publication	3-4 months	May–July 2025

Questions, comments, suggestions?

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

