Development of a Multidisciplinary Treatment Program for the Management of HIV/HCV Co-infected Patients

Suffolk County Department of Health Services (SCDHS)

Technical Assistance provided by HRSA
Shaheda Iftikhar, MD
Director of Infectious Diseases
Suffolk County Department of Health Services

Russell J.T. Perry, MD, FAAFP
HRSA Consultant
HCV and HIV
HCV Characteristics

- Family Flaviviridae\(^1\)
- Enveloped\(^2\)
- Positive-sense single-stranded RNA (9.6 kb)\(^1,3\)
- 3000–amino acid polyprotein\(^3\)
- No RNA polymerase proofreading ability\(^4\) — Quasispecies\(^4\)
- Half-life: ≈2.7 hours\(^2\)
- Daily production: 10 trillion (10\(^{12}\)) virions\(^2\)

Epidemiology of HCV
Genotype Distribution in the US*

- Genotype 1²: 74%
- Genotype 2,3¹: 22%
- Genotype 4,5,6¹: 4%

*In Hepatitis C Monoinfection

HCV Infection: Worldwide Genotype Distribution

Genotypes 1, 2, 3
Worldwide Distribution
Prevalent Genotype in US Infections

Genotype 4
Middle East, Africa

Genotype 5
South Africa

Genotype 6
Southeast Asia

Epidemiology: Quick Hits

- 5 million antibody positive
 - At least 4 Million have HCV RNA
 - CDC estimates may be as high as 7 million carriers

- 2.7 million are chronically infected with HCV

- Highest prevalence;
 - 30- to 54-year-olds
 - African American Males

- US disease burden and financial burden is steep
 - ~10,000 deaths per year attributed to CHC
Natural History of HCV Infection

Exposure (Acute Phase)
- 15% Resolved
- 85% Chronic

~20 year progression rate accelerated with HIV, HBV, alcohol

Resolved rate
20%

Chronic rate
accelerated

Cirrhosis
20%

6%/yr ESLD
4%/yr HCC

3–4%/yr Transplant/death

5-year survival in patients with HCC is < 5%²

HCC = hepatocellular carcinoma
ESLD = end-stage liver disease

Financial Burden of HCV-Related Liver Transplant

HCV-Related Liver Transplants Account for 40% of Total Transplants

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>~2000/year</td>
</tr>
<tr>
<td>Procurement, Hospital/Physician Charges</td>
<td>~$300,000</td>
</tr>
<tr>
<td>Evaluation, Follow Up</td>
<td>~$100,000</td>
</tr>
<tr>
<td>Total Transplant Cost</td>
<td>~$400,000</td>
</tr>
<tr>
<td>Immunosuppressant medication</td>
<td>~$30,000/year</td>
</tr>
<tr>
<td>Total cost (transplant + immunosuppressant tx)</td>
<td>~$430,000/ first year</td>
</tr>
</tbody>
</table>

HIV/HCV Co-infection
Overall Prevalence of HCV Among HIV-Infected Persons in the US

- HCV/HIV Coinfected: 30%
- HIV Monoinfected: 70%

Impact of HCV on HIV Disease Progression

- Prospective cohort study of 3111 patients on HAART between 6/96 to 5/99
- 37% were HCV+
- HIV-related progression and death higher in active IVDU with HCV infection
- HCV associated with blunted CD4 recovery
- Deaths from liver disease 3-fold higher

HCV/HIV Coinfection: An Area Of High Medical Need

- One third of HIV patients are coinfected with HCV\(^1\)
 - Among HIV-infected IVDU, this rises to 50% - 90%\(^2\)
- HCV viral load higher in HCV/HIV vs. HCV patients \(^3\)
- HIV accelerates clinical course of HCV-related liver disease
 - Time to cirrhosis is significantly reduced\(^4\)
 - Liver disease is now a leading cause of death in hospitalized AIDS patients\(^5\)
- HCV may also impact the course of HIV disease
 - Increases risk of ART-related hepatotoxicity\(^6\)
 - Apparent reduction in CD4 count responsiveness to ART\(^7\)

Barrier to HCV Treatment in an Urban HCV/HIV Clinic

149 HCV/HIV-Infected Patients

Eligible 30%

Ineligible 70%

ESLD 12%

AIDS 13%

Non-Adherence 23%

Drug Use 23%

Psychiatric 21%

Other 8%

ESLD, end stage liver disease

Conclusions

- HCV/HIV coinfected patients are less likely to be treated for HCV than those with HCV monoinfection

- Primary Barriers
 - Low physician referral rates
 - High no-show rates

- Additional reasons of ineligibility for HCV treatment
 - Non-adherence
 - Psychiatric illness
 - Relapsed drug or alcohol use

- Strategies to overcome these barriers are needed

Practice Guidelines Regarding HCV/HIV Coinfection

➢ 2004 AASLD Practice Guidelines, endorsed by the IDSA, recommend1:
 ● All HIV-infected individuals should be screened for HCV antibodies in serum or plasma
 ● Including those previously diagnosed with HIV

➢ Recommendations endorsed by the CDC, NIH, HIVMA, and IDSA, based on safety and efficacy demonstrated in PEGASYS Trials2:
 ● Antiviral treatment should be considered for all HIV patients coinfected with chronic hepatitis C infection

Guidelines may not necessarily reflect the approved labeling for Pegasys and Copegus
Hospital Admissions Among HIV-Infected Patients

5 Fold Increase in Liver Complications From 1995–2000

2007 Updated Recommendations From the HCV-HIV International Panel

- Optimal dosages of Peginterferon and RBV*
 - Current treatment of HCV in HIV+ should be pegylated interferon at standard doses plus weight-based RBV:
 - 1,000 mg/day if < 75 kg
 - 1,200 mg/day if > 75 kg

*Proposed RBV dosing is not reflective of current Copegus product labeling
Approved Copegus dosing is 800mg for HIV/HCV co-infected patients

Proposed Optimal Duration of Hepatitis C Therapy in HCV/HIV Coinfection Patients

Weight-based Ribavirin: 1,000 mg/day if < 75 kg and 1,200 mg/day if > 75 kg

*In patients with baseline low viral load and minimal liver fibrosis
W = week; neg = negative; pos = positive; G = genotype
Definitions of Virologic Response to Antiviral Therapy for Hepatitis C

<table>
<thead>
<tr>
<th>Response</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVR Rapid Virologic Response</td>
<td>HCV-RNA negative at 4 weeks as defined by HCV-RNA < 50 IU/mL</td>
</tr>
<tr>
<td>EVR Early Virologic Response</td>
<td>HCV-RNA negative or > 2 log$_{10}$ drop at week 12</td>
</tr>
<tr>
<td>Complete EVR (cEVR)</td>
<td>No RVR but HCV-RNA negative (< 50 IU/mL) at week 12</td>
</tr>
<tr>
<td>Partial EVR (pEVR)</td>
<td>No RVR and detectable but ≥ 2 log$_{10}$ drop in HCV-RNA at week 12</td>
</tr>
<tr>
<td>Slow partial responder</td>
<td>≥ 2 log$_{10}$ drop in HCV-RNA at week 12 but not HCV RNA negative until week 24</td>
</tr>
<tr>
<td>Partial responder</td>
<td>≥ 2 log$_{10}$ drop in HCV-RNA at week 12 but HCV RNA positive at week 24</td>
</tr>
<tr>
<td>SVR Sustained Virologic Response</td>
<td>HCV-RNA negative 24 weeks after end of treatment</td>
</tr>
<tr>
<td>Relapse</td>
<td>HCV-RNA negative at end of treatment but HCV-RNA positive after treatment stopped</td>
</tr>
</tbody>
</table>

RVR, cEVR, SVR in HIV/HCV Co-infection: Genotype 1 Virologic Responses

Pegasys 180 μg/week plus RBV 800 mg/day for 48 weeks

- **RVR**
 - 13% (22/176)
 - 82% (22/27)

- **cEVR**
 - 22% (38/176)
 - 63% (24/38)

- **pEVR**
 - 26% (46/176)

- **Non EVR**
 - 40% (70/176)

Community Health Center Network

- SCDOHS operates 9 community health centers
- Strategically located throughout Suffolk County
- Most patients do not have access to regular preventive care anywhere else
Health Center Patients

- **Patient Volume**
 - Approximately 60,000 unduplicated patients seen annually
 - Approximately 280,000 annual visits

- **Gender**
 - Male - 37.7%
 - Female - 62.3%

SUFFOLK COUNTY (NY)
Pop: 1,504,947 Area: 912 sq. miles
Health Center Locations

- **Amityville** – The Maxine S. Postal Tri-Community Health Center
- **Brentwood** – Brentwood Family Health Center
- **Coram** – Elsie Owens North Brookhaven County Health Center
- **East Hampton** – The Suffolk County Health Center at East Hampton
- **Patchogue** – South Brookhaven Family Health Center, West
- **Riverhead** – Riverhead Health Center
- **Shirley** – Marilyn Shellabarger South Brookhaven Family Health Center, East
- **Southampton** – Kraus Family Health Center at Southampton
- **Wyandanch** – Martin Luther King, Jr. Community Health Center
Approximately 500 HIV positive patients receive comprehensive primary care services at the health centers.

121 of these patients are HIV/HCV co-infected.

Each health center has an HIV Care Team (HIV specialist, HIV Nurse Coordinator, Case Manager/Social Worker) to take care of the HIV positive patients.
Issues and Barriers to Treatment of HIV /HCV Co-Infected Patients

- Shortage of specialists in the area
- Co-infected patients could not obtain appointments in timely fashion and treatment for HCV was delayed
- Lack of adequate transportation
Solution

- January 2009, HRSA consultant provided in-depth training on treatment of co-infected patients to the SCDHS HIV Care Teams
- Patient assessment and audit tools developed
- All HIV + patients screened for HCV and placed into one of five categories
Patient Assessment at Baseline

<table>
<thead>
<tr>
<th>Liver Evaluation if Needed</th>
<th>Clinical Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCV Genotype</td>
<td>PHQ9 Depression Screen</td>
</tr>
<tr>
<td>HCV RNA</td>
<td>Weight Evaluation</td>
</tr>
<tr>
<td>Liver Biopsy</td>
<td>Adverse Events</td>
</tr>
<tr>
<td>Liver Sono</td>
<td>ETOH counseling</td>
</tr>
<tr>
<td>AFP</td>
<td>Cardiac Eval/EKG</td>
</tr>
<tr>
<td>Lab Tests</td>
<td></td>
</tr>
<tr>
<td>WBC</td>
<td>Hep A serology</td>
</tr>
<tr>
<td>PLT</td>
<td>Hep B serology</td>
</tr>
<tr>
<td>ANC</td>
<td>Hep A vaccination</td>
</tr>
<tr>
<td>Hgb/Hct</td>
<td>Hep B vaccination</td>
</tr>
<tr>
<td>ALT</td>
<td>Pneumococcal vaccine</td>
</tr>
<tr>
<td>Bilirubin</td>
<td>Flu Vaccine</td>
</tr>
<tr>
<td>Pregnancy test</td>
<td>HIV Markers</td>
</tr>
<tr>
<td>Cr</td>
<td>HIV RNA</td>
</tr>
<tr>
<td>Glu</td>
<td>CD₄</td>
</tr>
<tr>
<td>TSH</td>
<td></td>
</tr>
<tr>
<td>ANA</td>
<td></td>
</tr>
</tbody>
</table>
Assessment:

- Patient is a candidate for HCV treatment or not; if not, what is the reason
- Treatment deferred at this time with the reason
Hepatitis C Treatment Audit Tool

Health Center

Patient

MR#

<table>
<thead>
<tr>
<th>Test</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD₄</td>
<td></td>
</tr>
<tr>
<td>HEP C VL</td>
<td></td>
</tr>
<tr>
<td>HEP GENOTYPE</td>
<td></td>
</tr>
<tr>
<td>DEPRESSION SCREEN (PHQ9)</td>
<td></td>
</tr>
<tr>
<td>ETOH EVALUATION</td>
<td></td>
</tr>
<tr>
<td>HEP A SEROLOGY</td>
<td></td>
</tr>
<tr>
<td>HEP B SEROLOGY</td>
<td></td>
</tr>
<tr>
<td>HEP A VACCINE (if indicated)</td>
<td></td>
</tr>
<tr>
<td>HEP B VACCINE (if indicated)</td>
<td></td>
</tr>
<tr>
<td>PNEUMOCOCCAL VACCINE</td>
<td></td>
</tr>
<tr>
<td>FLU VACCINE</td>
<td></td>
</tr>
<tr>
<td>EKG</td>
<td></td>
</tr>
<tr>
<td>Sonogram</td>
<td></td>
</tr>
<tr>
<td>AFP</td>
<td></td>
</tr>
<tr>
<td>PREGNANCY TEST</td>
<td></td>
</tr>
</tbody>
</table>

Patient is a candidate for treatment Yes _____ No _____

Treatment Success ______________ **Treatment Failure** ______________
Client Categories

Hepatitis C - Co-infected HIV Client Categories

1. **Category 1:** Patient is Hep C+, yet has cleared virus, previous exposure - no active infection (self cured, +HepC AB no virus detected)
2. **Category 2:** Patient with previous treatment, treatment failure in the past.
3. **Category 3:** Patient with previous treatment and cure.
4. **Category 4:** Patient who has active current barriers to treatment (low CD4, ETOH abuse, thrombocytopenia, etc.).
5. **Category 5:** Patient in the process of pre-treatment, target date for treatment initiation is to be determined, or in current active Hepatitis C treatment.

![Graph showing categories and number of patients]
Results

- Candidates for treatment (Category 5) underwent screening, education and counseling on treatment options and side effects.

- HRSA consultant remained available by telephone for questions.

- Follow up visit by HRSA consultant in May 2009 to review and discuss cases of screened patients.
Where We Are Now

- A total of 9 patients began treatment
- The first patient began treatment in July 2009
- Treatment takes extended time and patients need support of entire team
- HRSA consultant made a return visit in July 2010 to meet with the HIV Care Team to discuss patient management issues
- In the process of analyzing additional data
Lessons Learned

- Primary care providers can be effectively trained to become self-sufficient in providing the prevention education and treatment to HIV/HCV co-infected patients, with technical assistance from agencies like HRSA.

- Appropriate leadership is essential for the success of the program.

- In future, mono-infected patients may be treated using the same model.