

Detecting neurocognitive impairment in HIV-infected youth: Are we focusing on the wrong factors?

Jennifer Lewis, PsyD; Mathew Hirsch, PsyD & Susan Abramowitz, PhD NYU School of Medicine, New York, NY Friday, December 14, 2018

Disclosures

Presenter(s) has no financial interest to disclose.

This continuing education activity is managed and accredited by AffinityCE/Professional Education Services Group in cooperation with HRSA and LRG. PESG, HRSA, LRG and all accrediting organization do not support or endorse any product or service mentioned in this activity.

PESG, HRSA, and LRG staff as well as planners and reviewers have no relevant financial or nonfinancial interest to disclose.

Commercial Support was not received for this activity.

Learning Objectives

At the conclusion of this activity, the participant will be able to:

- 1. Identify multiple approaches in assessing neurocognitive impairments in young adults living with HIV
- 2. Demonstrate how a neuropsychological battery is used to identify neurocognitive impairments in young adults living with HIV
- 3. Explore differences between virally suppressed and unsuppressed individuals

Obtaining CME/CE Credit

If you would like to receive continuing education credit for this activity, please visit:

http://ryanwhite.cds.pesgce.com

Background

- Most individuals infected with HIV have some form of neurocognitive impairment, ranging from mild to moderate severity¹
- HIV-associated neurocognitive disorders (HAND) are prevalent in between 15% to 50% of HIV-infected individuals²
- Not all neuropsychological tests are able to detect cognitive and memory impairments in HIV-infected individuals³
- Gender differences have been identified in screening for neurocognitive impairments (NCI). One study (n=2863) showed that 52% of HIV-infected women compared to 35% of HIV-infected men, screened positive for NCIs⁴

1. Clifford & Ances, 2013, *The Lancet.com/infection; 2. Vera, Ridha, Gilleece et al., 2017, Eur J Nucl Med Mol Imaging:* 3. Barber et al., 2013, *The Clinical Neuropsychologist; 4. Robertson, K., et al., 2014, AIDS Care*

Background (cont.)

Neurocognitive impairments in a mild form, can interfere significantly with:

- Quality of life
- Treatment adherence
- Cognitively demanding activities of daily living (e.g., employment, medication management, driving etc.)
- Executive functioning and planning
- Information processing speed
- Motor skills

Multiple ways to assess neurocognitive impairments

- The literature supports multimodal approaches for detecting NCI Clinical ratings (CR) and Global Deficit Score (GDS)¹
- Neurocognitive testing can include assessment of at least two (2) or more of the following ability domains:
 - Cognitive domains (attention/information processing)
 - Language
 - Abstraction/Executive functioning
 - Memory (learning and recall)
 - Simple motor skills
 - Complex perceptual motor skill
- The clinical ratings (CR) approach is consistent with guidelines for the assessment of HAND classification, also known as the 'Frascati criteria'²

1. Blackstone et al., 2012, The Clinical Neuropsychologist; 2. Antinori et al., 2007, Neurology

Table 1. Disease severity and functional impact of neurocognitive impairment

Variable	Mild	Moderate	Severe
Test score results in at least 2 cognitive domains	At least 1 SD below the mean	At least 1 SD below the mean	At least 2 SD below the mean
Functional deficit	None	Mild difficulties with ADLs*	Markedly significant difficulties with ADLs

Adapted from - American Academy of Neurology, 1991; Antinori et al., 2007, Neurology; * ADLs - Activities of Daily Living

Clinical Ratings

Clinical ratings involve using demographically corrected T-scores (test scores) from a standardized neuropsychological battery

- Clinical ratings are assigned and scaled for all domains, ranging from 1 (above-average) to 9 (severely impaired)
- Cut-off score of ≥ 5 indicating mild impairment¹
 - Individuals are classified as "Impaired" if impairment is in two (2) ability domains
 - Similarity with the Frascati method

¹ Blackstone et al., 2012, The Clinical Neuropsychologist

Table 2. T-scores converted to Deficit scores

T-score	Clinical Rating	Impairment description
≥ 55	1	Above average
45-54	2	Average
40-44	3	Low average
-	4	Borderline
35-39	5	Definite mild impairment
30-34	6	Mild-to-moderate impairment
25-29	7	Moderate impairment
20-24	8	Moderate-to-severe impairment
≥19	9	Severe impairment

Blackstone et al., 2012, The Clinical Neuropsychologist

Global Deficit Score

- Involves evaluating the number and severity of deficit performance throughout the neuropsychological battery
- Individual test scores from a neuropsychological battery are then converted into deficit scores, ranging from 0 (no impairment) to 5 (severe impairment)
- Deficit scores are averaged across all tests in the battery to create a GDS
- Detects mild HIV-neurocognitive impairment and patterns of deficits in domains

Table 3. T-scores converted to Deficit scores

T-score	Deficit score	Impairment description
≥ 40	0	None (normal)
35-39	1	Mild impairment
30-34	2	Mild to moderate impairment
25-29	3	Moderate impairment
20-24	4	Moderate to severe impairment
≤ 19	5	Severe impairment

Blackstone et al., 2012, The Clinical Neuropsychologist

CR vs. GDS approaches

- Both approaches appear to detect mild, HIV-associated NCI
- CR approach requires impairment in at least two (2) ability domains, while the GDS considers numbers and severity of impairment across all measures
- GDS may be more "user friendly", whereas CR has more similarities with the gold standard (Frascati method)
- Research found a high degree of agreement between the two methods
- More people were classified as 'impaired' using the CR approach, suggesting CR may be more appropriate for detecting subtle levels of impairment

Blackstone et al., 2012, The Clinical Neuropsychologist

Other approaches in detecting neurocognitive impairment

- Carey et al., (2004)
 - Compared six neuropsychological measures most likely affected by HIV infection to determine diagnostic accuracy rates
 - Neuropsychological impairment was classified if demographically corrected T-scores fell below 40 on two (2) tests or below 35 on one (1) test

How to create a neuropsychological battery

- * Little consensus over the makeup of an appropriate neuropsychological battery ¹
- Neuropsychological testing is time-consuming, costly, and education and language dependent²
- * A growing demand exists for brief neuropsychological screening measures³
- Many neuropsychological tests for each domain
- Decision criteria: length of batteries and domains most likely affected by HIV infection⁴

1. Barber et al., 2013, AIDS Care; 2. Hueying, H., et al., 2012, Exp. Ther Med; 3. Malloy, Cummings, Coffey, Duffy, & Fink, 1997, Journal of Neuropsychiatry & Clinical Neurosciences; 4. Carey et al., 2017, The Clinical Neuropsychologist

Table 4. Neuropsychological Tests

Domains	Neuropsychological Tests/Tools
General neuropsychological impairment	International HIV Dementia Scale (IDHS); Montreal Cognitive Assessment Test (MoCA) HIV Dementia Scale (HDS); Brief Neuro-cognitive Screen
Attention/information processing speed	WAIS-IV - Digit span (Forward & Backward) / Trail-making Test – Part A; Stroop Color and Word Test; Paced Auditory Serial Addition Test (PASAT)
Language	Boston Naming Test
Memory (Learning and Recall)	Hopkins Verbal Learning Test-Revised; Brief Visuo-spatial Memory Test-Revised (BVMT)
Motor skills	Grooved Pegboard Test; Timed Gait Test
Psychomotor speed	WAIS-IV – Symbol Search; Trail Making Test – Parts A & B; Color Trails – Part 1
Executive functioning	Trail-making Test – Part B;

Exploratory investigation of a neuropsychological testing battery

- Population
- Tools used
- Procedures
- Results

Participants (n=27)

- Clients in a NYC Young Adult Infectious Diseases Clinic
- Perinatally acquired youth living with HIV 22 (85.2%)
- ✤ Gender (predominantly male) 17 (63%)
- ✤ Ages mean 24.96 years, SD 3.39, and Range is 19 34 years
- Ethnicity
 - Non-Hispanic Black 18 (66.7%)
 - Hispanic 9 (33.3%)
- Viral load
 - Suppressed 23 (85.2%)
 - Unsuppressed 4 (14.8%)

Clinical neuropsychological battery

Three (3) neuropsychological tools and four (4) ability domains assessed:

- Memory (visual) Brief-Visuospatial Memory Test-Revised (BVMT-R)
- Visual-motor coordination Grooved Pegboard Test (Dominant & Non-dominant hand)
- Attention/Information Processing speed WAIS-IV (Digit span Forwards & Backwards)
- Psychomotor speed WAIS-IV Symbol Search

Procedures

- Raw test scores from each of the measures were converted to T-scores to create a standardized way of detecting impairments across measures
- Raw scores were converted to demographically corrected T-scores, adjusting for age, ethnicity, gender and education¹
- Following Carey et al., 2004's neuropsychological screening battery criteria, impaired test performance was defined by T-scores in at least two (2) measures, falling below 40, or if a T-score for one (1) measure fell below 35, indicating mild-to-moderate impairment²
- Descriptive statistics (Means and SD) were used to determine which measures generated the greatest amount of impairment
- 1. Norman, et al., 2011, J Clin Exp Neuropsychol; 2. Carey et al., 2004, The Clinical Neuropsychologist

Table 5. Demographically corrected means andstandard deviations of the measures

Variable	Mean (SD)	Range
*Memory – BVMT (n=17)	43.00 (10.20)	27 - 62
*Motor – Groove Pegboard Dominant hand (n= 19) Non-dominant hand (n=19)	34.11 (8.87) 36.53 (10.68)	21 — 53 20 — 53
Attention – Digit span (n=18)	44.61 (9.51)	30 – 67
Psychomotor speed – Symbol Search (n=19)	35.16 (9.38)	20 – 53

*Used demographically corrected T-scores for these measures (Heaton, Grant & Mathews (1991); *Benedict,* 1997

Table 6. Impairment detected by measure

Measure	Patients with impairments (%) Demographically corrected	Patients with impairments (%) Non-demographically corrected
Symbol search (n=12)	63%	63%
*Grooved Pegboard – Dom. hand (n=10 vs. n=13) Non-dominant hand (n=9 vs. n= 8)	53% 47%	68% 42%
*BVMT (n=4 vs. n=7)	24%	41%
Digit Span (n=2)	11%	11%

Impairment determined if patient scored 1.5 SD or lower on an individual measure

*Used demographically corrected T-scores for these measures (Heaton, Grant & Mathews (1991); Benedict, 1997

Table 7.Virally suppressed vs. unsuppressed

Variable	Virally suppressed (n=23)	Unsuppressed (n=4)
	Means (SD)	Means (SD)
BVMT	42.30 (10.9)	45.25 (8.6)
Groove Pegboard - Dominant hand	33.81 (9.5)	35.67 (4.5)
- Non-Dominant hand	36.94 (11.3)	34.33 (7.7)
Digit span	45.38 (9.3)	47.0
Symbol search	34.17 (8.6)	53.0

Table 8. Demographic characteristics by impairment

Variable	No cognitive impairment N (%)	Impairment N (%)
Age (n=27)	9 (23)	18 (67)
Gender – Female (n=10) - Male (n=17)	2 (20) 7 (41)	8 (80) 10 (59)
Ethnicity - Non-Hispanic Black (n=18) - Hispanic (n=9)	4 (22) 5 (56)	14 (78) 4 (44)
Viral suppressionVirally suppressed (n=23)Unsuppressed (n=4)	7 (30) 2 (50)	16 (70) 2 (50)

Results

- Using demographically corrected T-scores, for memory and motor functioning, mild to moderate neurocognitive impairment was noted in two (2) ability domains - motor and psychomotor speed (among suppressed individuals)
- When correcting for demographic variables, 24% of patients had visual memory impairments, compared to 41% using the published norms
- 63% of HIV-infected participants exhibited NCI in psychomotor speed
- 53% of participants exhibited impairment with the *dominant hand* of the motor test

Client characteristics affect NCI

- Consistent with the literature, a higher percentage of women (80%) than men (59%) were found to have neurocognitive impairments
- Ethnicity Non-Hispanic Black participants (78%) exhibited impairments
- Sixty-seven percent (67%) of our sample exhibited overall neurocognitive impairments
- Seventy percent (70%) of virally suppressed patients still exhibited overall neurocognitive impairments

Summary

- Early neurocognitive screening an essential preventative measure to forestall long-term neurocognitive deficits
- Mild neurocognitive impairments continue to exist even in virally suppressed young adults living with HIV, and NCIs are risk factors for further neurocognitive deterioration
- Using demographically corrected T-scores are important when assessing the areas of visual memory and visual-motor coordination
- Results of neurocognitive assessments can help providers in assisting HIVinfected individuals learn skills to better manage and compensate for deficits
- A thorough medical and clinical evaluation should include assessment of ADLs, psychiatric symptoms (including mood and substance use disorders), and neurobrain imagining tests, when detecting neurocognitive impairments

Acknowledgements

- The Pediatric/Young Adult Infectious Diseases Clinic, NYU Bellevue Hospital Center, New York, NY is funded by Ryan White Care Act:
 - Part C grant no. 2 H76HA000432700
 - Part D grant no. 6 H12HA248790602
- NY State AIDS Institute Youth Specialized Center for Care
- Jeff Natt, Program Manager
- Gail Shust, MD, Clinical Director
- Clinical treatment team at the Pediatric/Young Adult Infectious Diseases Clinic

Contact information

Jennifer Lewis, PsyD

Assistant Clinical Professor/Clinical Psychologist

NYU School of Medicine

Department of Pediatric Infectious Diseases

550 First Avenue

New York, NY 10016

Email: Jennifer.Lewis@nyumc.org Tel: (212) 263-8226

Mathew Hirsch, PsyD

Research Scientist/Clinical Psychologist NYU School of Medicine Department of Pediatric Infectious Diseases 550 First Avenue New York, NY 10016 Email: Mathew.Hirsch@nyumc. org Tel: (212) 263-7312

Susan Abramowitz, PhD

Associate Professor NYU School of Medicine Department of Pediatric Infectious Diseases 550 First Avenue New York, NY 10016 Email: <u>Susan.Abramowitz@nyu</u> <u>mc.org</u> Tel: (212) 263-8797

