Estimate of the Number of Persons Living with HIV in Massachusetts

Christian Hague, MPH

Supervisor, HIV Surveillance
Massachusetts Department of Public Health
Disclosures

Presenter(s) has no financial interest to disclose.

This continuing education activity is managed and accredited by Professional Education Services Group in cooperation with HSRA and LRG. PESG, HSRA, LRG and all accrediting organization do not support or endorse any product or service mentioned in this activity.

PESG, HRSA, and LRG staff has no financial interest to disclose.
Learning Objectives

At the conclusion of this activity, the participant will be able to:

1. Describe different methods of estimating a jurisdiction’s undiagnosed HIV positive population.
2. Outline the variations of prevalence estimates using different methods.
3. Communicate the value of applying more than one estimation method.
Agenda

• Surveillance background
• State of the HIV epidemic in MA
• Methods of HIV prevalence estimation
• Methods used by MA
• Results
• Conclusion
Key Massachusetts Dates

• 1983: AIDS reportable by name
• 1994: First state-funded NEX program
• 1999: HIV reportable by code
• 2001: Medicaid expansion for PLWH
• 2006: State Health Care Reform
• 2006: Syringe deregulation
• 2007: HIV and AIDS reportable by name
• 2012: All viral loads and CD4 results reportable
• 2013: Electronic Laboratory Reporting
Massachusetts HIV/AIDS Epidemic at a Glance

• As of February 23, 2016 a cumulative total of 34,023 individuals have been diagnosed and reported with HIV/AIDS in MA.
 • 20,293 are living with HIV/AIDS
 • 13,730 have died
 • An additional 3,815 MA residents living with HIV/AIDS were first diagnosed in another state
• 629 new diagnoses reported in 2014 (9.3/100,000)
• Median viral load (most recent) is <20 copies
• Median CD4 count (most recent) is 547 cells/mm³

Data Source: MDPH HIV/AIDS Surveillance Program, Data as of 3/01/16

People Living with HIV/AIDS

Number of Prevalent Cases

Year

Data Source: MDPH HIV/AIDS Surveillance Program, Data as of 3/01/16
Trends in HIV Infection and Death among People Reported with HIV/AIDS by Year: Massachusetts, 2004–2014

- **Diagnosis of HIV Infection**: The number of individuals diagnosed with HIV infection has been decreasing over the years from 2004 to 2014.
- **Death**: The number of deaths due to HIV/AIDS has also been decreasing over the same period.

Data Source: MDPH HIV/AIDS Surveillance Program, Data as of 3/01/16
Stages of HIV Care Among People Living with HIV/AIDS in Massachusetts

- **PLWHA**
 - N=19,071

- Engaged in Care*
 - N=14,337

- Retained in Care*
 - N=11,301

- Virally Suppressed in 2014*
 - N=12,363

Among engaged in care, 86% are virally suppressed
Among those retained in care, 89% are virally suppressed

* Lab received by MDPH

1 Includes individuals diagnosed through 2013 and living in MA as of 12/31/14, based on last known address, regardless of state of diagnosis

Data Source: MDPH HIV/AIDS Surveillance Program, cases reported through 1/1/16
Distribution of PLWHA in Massachusetts by viral load

- Virally Suppressed, 65%
- No Viral Load During 2014, 28%
- NOT Virally Suppressed, 8%

N=19,071

1 Includes individuals diagnosed through 2013 and living in MA as of 12/31/14, based on last known address, regardless of state of diagnosis
• Data Source: MDPH HIV/AIDS Surveillance Program, cases reported through 1/1/16
Why estimate undiagnosed HIV infection?

• More than 1.2 million people in the United States are living with HIV infection (CDC).
 • It is estimated that almost 1 in 8 (12.8 percent) don’t know they are infected (CDC).
 • People unaware of HIV status contribute to 1/3 of ongoing HIV transmissions (CDC)

• First bar of HIV Care Continuum
 • Include undiagnosed when measuring disease burden

• Critical blind spot in HIV care and prevention
Comprehensive Health Care Reform (2006)

Uninsurance at the Time of the Survey for all Massachusetts Respondents and the Nation as a Whole, 2008-2011, 2014 and 2015

Source: www.chiamass.gov
Share experience from your jurisdiction

• Has your jurisdiction calculated undiagnosed HIV?

• What estimation methods do you employ?

• In what ways do you use this estimate?
Why look at different methods?

• The Massachusetts setting includes:

 • Health care reform

 • Incidence decline

 • Reduced mortality

 • Low seroprevalence in counseling and testing data
Methods of Estimating PLWHA

DOI:10.1097/QAD.0b013e3283467087
Multiple Methods of Estimating PLWHA

• Based on prevalence surveys
 • UNAIDS/WHO (EPP)
 • Multi-parameter Evidence Synthesis

• Based on diagnoses and incidence data
 • Cambridge
 • CDC back-calculation
 • Ottawa/Sydney
 • Paris
 • Bordeaux

• Based on CD4 counts and concurrent diagnosis
 • London 1
 • London 2

• Based on transmission models
Methods Adapted for Use in MA

- Multi-parameter Evidence Synthesis
- Seattle-King County Method
- CDC Back-Calculation
- Modified London-1
Multi-Parameter Evidence Synthesis

• Seroprevalence by risk population (MSM, IDU, etc)
 • Surveillance and CTR data
• Estimated number of persons in each of the high risk populations
 • Capture-recapture method
• Prevalence surveys and estimation of transmission risk populations
 • Allows for multiple sources of data

DOI:10.1097/QAD.0b013e3283467087
Multi-Parameter Evidence Synthesis Adapted for Massachusetts

• MA adapted method to use race and ethnicity data by age
• Data sources
 • State Counseling, Testing, and Referral (CTR) data
 • HIV Surveillance

DOI:10.1097/QAD.0b013e3283467087
Multi-parameter Evidence Synthesis

Results

• Estimates overall prevalence
• Uses seroprevalence by risk
• We used by race from counseling and testing

<table>
<thead>
<tr>
<th>Race/Ethnicity</th>
<th>%</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>White non-Hispanic</td>
<td>0.3%</td>
<td>15796</td>
</tr>
<tr>
<td>Black non-Hispanic</td>
<td>0.7%</td>
<td>3041</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.9%</td>
<td>5649</td>
</tr>
<tr>
<td>Total</td>
<td>~0.9%</td>
<td>~24500</td>
</tr>
</tbody>
</table>

DOI:10.1097/QAD.0b013e3283467087
Seattle-King County Method

- Using HIV testing history data
- Time between last negative HIV test and 1st positive result
 - Date of last negative
 - Date of diagnosis
- Estimating Time from Infection to Diagnosis (TID)
- Sources of HIV testing data
 - Case Surveillance (eHARS)
 - HIV Incidence Surveillance (eHARS)
 - Partner Services data
Seattle-King County Method Adapted for Massachusetts

• Software for this methodology was available through R and was made available to the public on GitHUB.

• MA used HIV case and incidence surveillance data 2007-2014 diagnosis.

Seattle Method Results

<table>
<thead>
<tr>
<th>Measure</th>
<th>Min.</th>
<th>1st Qu.</th>
<th>Median</th>
<th>Mean</th>
<th>3rd Qu.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence (Base Count)</td>
<td>286</td>
<td>321</td>
<td>345</td>
<td>339</td>
<td>363</td>
<td>377</td>
</tr>
<tr>
<td>Incidence (Upper Bound)</td>
<td>314</td>
<td>341</td>
<td>360</td>
<td>356</td>
<td>374</td>
<td>383</td>
</tr>
<tr>
<td>Undiagnosed (Base Case)</td>
<td>1338</td>
<td>1746</td>
<td>2043</td>
<td>1954</td>
<td>2187</td>
<td>2499</td>
</tr>
<tr>
<td>Undiagnosed (Upper Bound)</td>
<td>3083</td>
<td>3750</td>
<td>3928</td>
<td>3934</td>
<td>4203</td>
<td>4685</td>
</tr>
</tbody>
</table>

CDC Back Calculation

- SAS macro/programs, R programs provided by CDC
- Three step process:
 - Reporting delay weights
 - Multiple imputation
 - Back Calculation
- eHARs data (HIV Surveillance data)
- Estimate the prevalence of person ≥ 13 with HIV infection, currently residing in MA, data up to 12/31/2013 reported as of 12/31/2015
CDC Back Calculation cont.

• Reporting Delay weights
 • Measures elapsed time before a diagnosis or death is reported to CDC
 • Estimates the distribution of delay in reporting diagnosis and death.

• Multiple Imputation
 • Imputes values for observations with missing info.

• Back Calculation
 • Data are adjusted for reporting delays, missing risk info, incorrect dx dates and under-reporting of HIV cases
CDC Back-Calculation Results

<table>
<thead>
<tr>
<th>Year</th>
<th>Prevalence</th>
<th>Undiagnosed</th>
<th>% of diagnosed</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>95% CI</td>
<td>No.</td>
<td>95% CI</td>
</tr>
<tr>
<td>2011</td>
<td>32,100</td>
<td>(31,500-32,500)</td>
<td>4,400</td>
<td>3,600-5,000</td>
</tr>
<tr>
<td>2012</td>
<td>32,600</td>
<td>(32,000-33,200)</td>
<td>4,200</td>
<td>3,200-5,000</td>
</tr>
<tr>
<td>2013</td>
<td>33,200</td>
<td>(32,300-34,100)</td>
<td>4,000</td>
<td>3,000-5,000</td>
</tr>
</tbody>
</table>
London-1 Method

• Estimate person infected with need for treatment (CD4 <200)
• Number of diagnosed persons with symptoms related to HIV infection, regardless of CD4 count
• Applies incidence rate of HIV related symptoms per person year from a seroconversion cohort

Lodwick et al. 2015 PLOS ONE DOI:10.1371/journal.pone.0121992
Modified London-1 Adapted to Massachusetts

• Data sources
 • eHARS
 • CD4 at diagnosis
 • Counseling and Testing

• # HIV diagnosed persons by Country of Birth
 • Recent 3 years
 • By CD4 count

Lodwick et al. 2015 PLOS ONE DOI:10.1371/journal.pone.0121992
Modified London-1- Results

<table>
<thead>
<tr>
<th>Country of Birth</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>US born</td>
<td>1,339</td>
</tr>
<tr>
<td>US dependency</td>
<td>152</td>
</tr>
<tr>
<td>Other</td>
<td>969</td>
</tr>
<tr>
<td>Total Est Undiagnosed</td>
<td>2,460</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prevalence Estimate</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Est Undiagnosed</td>
<td>2,460</td>
</tr>
<tr>
<td>Prevalent</td>
<td>~20,000</td>
</tr>
<tr>
<td>Total</td>
<td>~22,500</td>
</tr>
</tbody>
</table>
Summary of Estimate by Method

- Multi
- Seattle
- CDC
- London

Estimated number of persons

- Multi: 25,000
- Seattle: 25,000
- CDC: 35,000
- London: 25,000
Conclusions

• Useful in testing multiple methods to get a better range or representation of PLWHA
• More consistent with collection of indicators (death trends, incidence trend, seroprevalence)
• Methods can be applied by any surveillance program or jurisdiction
• Each method has its strengths and weakness but using multiple methods gives you a range
 - Result is stronger than any one given method
 - Permits greater confidence when multiple methods yield consistent estimates
Contributors:

• Christian Hague, MPH- Supervisor, HIV Surveillance Program, MDPH
• Betsey John, MPH- Director, HIV & STD Surveillance
• Monina Klevens, DDS, MPH, Research and Evaluation Director, Bureau of Infectious Disease and Laboratory Sciences, MDPH
• Dawn Fukuda ScM, Director, Office of HIV/AIDS, MDPH
• Alfred DeMaria, Jr., MD, State Epidemiologist & Medical Director, Bureau of Infectious Disease and Laboratory Sciences, MDPH
• Kevin Cranston MDiv, Assistant Commissioner, Director, Bureau of Infectious Disease and Laboratory Sciences, MDPH
Obtaining CME/CE Credit

If you would like to receive continuing education credit for this activity, please visit:

Link to obtain credit